标本数据启用的科学

Dobson, R., S. G. Willis, S. Jennings, R. A. Cheke, A. J. Challinor, and M. Dallimer. 2024. Near‐Term Forecasting of Terrestrial Mobile Species Distributions for Adaptive Management Under Extreme Weather Events. Global Change Biology 30. https://doi.org/10.1111/gcb.17579

Across the globe, mobile species are key components of ecosystems. Migratory birds and nomadic antelope can have considerable conservation, economic or societal value, while irruptive insects can be major pests and threaten food security. Extreme weather events, which are increasing in frequency and intensity under ongoing climate change, are driving rapid and unforeseen shifts in mobile species distributions. This challenges their management, potentially leading to population declines, or exacerbating the adverse impacts of pests. Near‐term, within‐year forecasting may have the potential to anticipate mobile species distribution changes during extreme weather events, thus informing adaptive management strategies. Here, for the first time, we assess the robustness of near‐term forecasting of the distribution of a terrestrial species under extreme weather. For this, we generated near‐term (2 weeks to 7 months ahead) distribution forecasts for a crop pest that is a threat to food security in southern Africa, the red‐billed quelea Quelea quelea. To assess performance, we generated hindcasts of the species distribution across 13 years (2004–2016) that encompassed two major droughts. We show that, using dynamic species distribution models (D‐SDMs), environmental suitability for quelea can be accurately forecast with seasonal lead times (up to 7 months ahead), at high resolution, and across a large spatial scale, including in extreme drought conditions. D‐SDM predictive accuracy and near‐term hindcast reliability were primarily driven by the availability of training data rather than overarching weather conditions. We discuss how a forecasting system could be used to inform adaptive management of mobile species and mitigate impacts of extreme weather, including by anticipating sites and times for transient management and proactively mobilising resources for prepared responses. Our results suggest that such techniques could be widely applied to inform more resilient, adaptive management of mobile species worldwide.

Botero‐Cañola, S., C. Torhorst, N. Canino, L. Beati, K. C. O’Hara, A. M. James, and S. M. Wisely. 2024. Integrating Systematic Surveys With Historical Data to Model the Distribution of Ornithodoros turicata americanus, a Vector of Epidemiological Concern in North America. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70547

Globally, vector‐borne diseases are increasing in distribution and frequency, affecting humans, domestic animals, and wildlife. Science‐based management and prevention of these diseases requires a sound understanding of the distribution and environmental requirements of the vectors and hosts involved in disease transmission. Integrated Species Distribution Models (ISDM) account for diverse data types through hierarchical modeling and represent a significant advancement in species distribution modeling. We assessed the distribution of the soft tick subspecies Ornithodoros turicata americanus. This tick species is a potential vector of African swine fever virus (ASFV), a pathogen responsible for an ongoing global epizootic that threatens agroindustry worldwide. Given the novelty of this method, we compared the results to a conventional Maxent SDM and validated the results through data partitioning. Our input for the model consisted of systematically collected detection data from 591 sampled field sites and 12 historical species records, as well as four variables describing climatic and soil characteristics. We found that a combination of climatic variables describing seasonality and temperature extremes, along with the amount of sand in the soil, determined the predicted intensity of occurrence of this tick species. When projected in geographic space, this distribution model predicted 62% of Florida as suitable habitat for this tick species. The ISDM presented a higher TSS and AUC than the Maxent conventional model, while sensitivity was similar between both models. Our case example shows the utility of ISDMs in disease ecology studies and highlights the broad range of geographic suitability for this important disease vector. These results provide important foundational information to inform future risk assessment work for tick‐borne relapsing fever surveillance and potential ASF introduction and maintenance in the United States.

Tu, W., Y. Du, Y. E. Stuart, Y. Li, Y. Wang, Q. Wu, B. Guo, and X. Liu. 2024. Biological invasion is eroding the unique assembly of island herpetofauna worldwide. Biological Conservation 300: 110853. https://doi.org/10.1016/j.biocon.2024.110853

Island ecosystems have significant conservation value owing to their higher endemic biotas. Moreover, studies of regional communities that compare differences in species composition (species dissimilarity) among islands and the mainland suggest that community assembly on islands is different from that on the mainland. However, the uniqueness of island biotic assembly has been little studied at the global scale, nor have phylogenetic information or alien species been considered in these patterns. We evaluate taxonomic and phylogenetic change from one community to the next, focusing on differences in species composition between mainland-mainland (M-M) pairs compared to differences between mainland-island pairs (M-I) and between island-island pairs (I-I), using herpetofauna on islands and adjacent mainland areas worldwide. Our analyses detect greater taxonomic and phylogenetic dissimilarity for M-I and I-I comparisons than predicted by M-M model, indicating different island herpetofauna assembly patterns compared with mainland counterparts across the world. However, this higher M-I dissimilarity has been significantly decreased after considering alien species. Our results provide global evidence on the importance of island biodiversity conservation from the aspect of both the taxonomic and phylogenetic uniqueness of island biotic assembly.

Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379

We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.

Ascanio, A., J. T. Bracken, M. H. H. Stevens, and T. Jezkova. 2024. New theoretical and analytical framework for quantifying and classifying ecological niche differentiation. Ecological Monographs. https://doi.org/10.1002/ecm.1622

Ecological niche differentiation is a process that accompanies lineage diversification and community assembly. Traditionally, the degree of niche differentiation is estimated by contrasting niche hypervolumes of two taxa, reconstructed using ecologically relevant variables. These methods disregard the fact that niches can shift in different ways and directions. Without means of discriminating between different types of niche differentiation, important evolutionary and ecological patterns may go unrecognized. Herein, we introduce a new conceptual and methodological framework that allows quantification and classification of niche differentiation and divergence between taxa along single niche axis. This new method, the Niche Divergence Plane, is based on species' responses to an underlying environmental gradient, from which we derive a two‐dimensional plane defined by two indices, niche exclusivity and niche dissimilarity. These two indices identify the proportion of the environmental gradient that is unique to each species, that is, how much of the environmental gradient species do not share (niche breadth exclusivity) and how different the species' responses are along the environmental gradient (niche dissimilarity). Thus, the latter can also be seen as a measure of the differences in niche preference or importance, even when there is significant overlap in niche breadth (i.e., low niche exclusivity). Based on the position of the two indices on the divergence plane, we can distinguish niche conservatism from four other general types of niche divergence: hard, soft, weighted, and nested. We demonstrate that the Niche Divergence Plane complements traditional measures of niche similarity (e.g., Schoener's D or Hellinger's I). Additionally, we show an empirical comparison using the Niche Divergence Plane framework on two Ambystoma salamanders. Overall, we demonstrate that the Niche Divergence Plane is a versatile tool that can be used to complement and expand previous methods of ecological niche comparisons and the study of ecological niche divergence.

Trujillo, L. A., C. Mischler, L. E. Gutiérrez-López, M. Herrera, and J. G. Martínez-Fonseca. 2024. Noteworthy records of Myotis Kaup, 1829 species in northeastern Guatemala, including the first record of M. volans (H. Allen, 1866) (Chiroptera, Vespertilionidae) from the country. Check List 20: 969–975. https://doi.org/10.15560/20.4.969

Myotis is the most diverse genus of bats in Central America, with 10 species currently reported for Guatemala. Here, we present the first record of M. volans (H. Allen, 1866), and third record of M. auriculus Baker & Stains, 1955 in Guatemala, both from the cloud forest of the highlands of Sierra de las Minas Biosphere Reserve. This new locality may serve as one of the southernmost habitats akin to North American ecosystems for these two species. Our record of M. volans increases the number of bats in Guatemala to 105. Our findings underscore the importance of further research to understand patterns of biodiversity in Guatemala and Central America.

Jiménez-Guevara, C. D., R. Rodríguez-Estrella, E. Martínez-Meyer, A. G. Navarro-Sigüenza, J. F. Ornelas, and P. P. Garcillán. 2024. Geographical and ecological allopatry effects on niche change in two sister species pairs of hummingbirds in western North America. Journal of Arid Environments 224: 105236. https://doi.org/10.1016/j.jaridenv.2024.105236

Here, we explored how variations in the allopatric speciation scenario, specifically ecological vs. vicariant allopatry, relate to climatic niche change in sister species. We selected two sister species pairs of North American hummingbirds (Calypte anna, C. costae, Basilinna leucotis, B. xantusii) that diverged 2.5 and 3.6 million years ago, under ecological (arid climate tendency during Pliocene) and vicariant (Baja California peninsula separation) allopatric processes, respectively. We constructed the climatic niche of each species using occurrence records and estimated the distance, similarity, and unique fraction of climatic niche between sister species. Calypte species showed moderate niche divergence (Euclidean distance between centroids = 1.94, Sørensen index of similarity = 0.080, unique fraction of hypervolume in C. costae = 0.57, and C. anna = 0.95). However, contrary to expectations, Basilinna species, which diverged under a vicariant scenario, displayed clear niche divergence (Euclidean distance between centroids = 3.78, Sørensen index of similarity = 0.0001, and unique fraction of hypervolume in B. xantusii = 0.98, and B. leucotis = 0.99). We explained dissimilarity in climatic niches between Basilinna species by the ecological divergence between habitats of disjunct populations, which would have also been associated with increased aridity during the Pliocene.

López-Reyes, K., C. Yáñez-Arenas, and F. Villalobos. 2024. Exploring the causes underlying the latitudinal variation in range sizes: Evidence for Rapoport’s rule in spiny lizards (genus Sceloporus) B. K. Acharya [ed.],. PLOS ONE 19: e0306832. https://doi.org/10.1371/journal.pone.0306832

Species’ range size is a fundamental unit of analysis in biodiversity research, given its association with extinction risk and species richness. One of its most notable patterns is its positive relationship with latitude, which has been considered an ecogeographical rule called Rapoport’s rule. Despite this rule being confirmed for various taxonomic groups, its validity has been widely discussed and several taxa still lack a formal assessment. Different hypotheses have been proposed to explain their potential mechanisms, with those related to temperature and elevational being the most supported thus far. In this study, we employed two level of analyses (cross-species and assemblage) to investigate the validity of Rapoport’s rule in spiny lizards (genus Sceloporus). Additionally, we evaluated four environmental-related hypotheses (minimum temperature, temperature variability, temperature stability since the last glacial maximum, and elevation) posed to explain such pattern, contrasting our results to those patterns expected under a null model of range position. Our results provided support for Rapoport’s rule at both levels of analyses, contrasting with null expectations. Consistently, minimum temperature and elevation were the most relevant variables explaining the spatial variation in range size. At the cross-species level, our null simulations revealed that both variables deviated significantly from random expectations. Conversely, at the assemblage level, none of the variables were statistically different from the expected relationships. We discussed the implication of our findings in relation to the ecology and evolution of spiny lizards.

Araya‐Donoso, R., A. Biddy, A. Munguía‐Vega, A. Lira‐Noriega, and G. A. Dolby. 2024. Habitat quality or quantity? Niche marginality across 21 plants and animals suggests differential responses between highland and lowland species to past climatic changes. Ecography. https://doi.org/10.1111/ecog.07391

Climatic changes can affect species distributions, population abundance, and evolution. Such organismal responses could be determined by the amount and quality of available habitats, which can vary independently. In this study, we assessed changes in habitat quantity and quality independently to generate explicit predictions of the species' responses to climatic changes between Last Glacial Maximum (LGM) and present day. We built ecological niche models for genetic groups within 21 reptile, mammal, and plant taxa from the Baja California peninsula inhabiting lowland or highland environments. Significant niche divergence was detected for all clades within species, along with significant differences in the niche breadth and area of distribution between northern and southern clades. We quantified habitat quantity from the distribution models, and most clades showed a reduction in distribution area towards LGM. Further, niche marginality (used as a measure of habitat quality) was higher during LGM for most clades, except for northern highland species. Our results suggest that changes in habitat quantity and quality can affect organismal responses independently. This allows the prediction of genomic signatures associated with changes in effective population size and selection pressure that could be explicitly tested from our models.

Cheeseman, A. E., D. S. Jachowski, and R. Kays. 2024. From past habitats to present threats: tracing North American weasel distributions through a century of climate and land use change. Landscape Ecology 39. https://doi.org/10.1007/s10980-024-01902-3

Context Shifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk species. Objectives We investigated historical drivers of environmental niche change for three North American weasel species (American ermine, least weasel, and long-tailed weasel) to understand their response to environmental change. Methods Using species occurrence records and corresponding environmental data, we developed species-specific environmental niche models for the contiguous United States (1938–2021). We generated annual hindcasted predictions of the species’ environmental niche, assessing changes in distribution, area, and fragmentation in response to environmental change. Results We identified a 54% decline in suitable habitat alongside high levels of fragmentation for least weasels and region-specific trends for American ermine and long-tailed weasels; declines in the West and increased suitability in the East. Climate and land use were important predictors of the environmental niche for all species. Changes in habitat amount and distribution reflected widespread land use changes over the past century while declines in southern and low-elevation areas are consistent with impacts from climatic change. Conclusions Our models uncovered land use and climatic change as potential historic drivers of population change for North American weasels and provide a basis for management recommendations and targeted survey efforts. We identified potentially at-risk populations and a need for landscape-level planning to support weasel populations amid ongoing environmental changes.