标本数据启用的科学
Bartholomew, C. S., E. A. Murray, S. Bossert, J. Gardner, and C. Looney. 2024. An annotated checklist of the bees of Washington state. Journal of Hymenoptera Research 97: 1007–1121. https://doi.org/10.3897/jhr.97.129013
AbstractBees (Hymenoptera: Apoidea) are vital components of global ecosystems, yet knowledge of their distribution is limited in many regions. Washington state is located in an ecologically diverse part of North America and encompasses habitat types and plant communities known for high bee species richness. To establish a baseline for future studies on bee communities in the state, we used published and unpublished datasets to develop a preliminary annotated checklist of bees occurring in Washington state. We document, with high confidence, 565 species of bees in Washington and identify an additional 102 species likely to occur in the state. We anticipate future research survey efforts, such as the newly initiated Washington Bee Atlas, will discover several species that have the potential to occur in Washington and provide new data for 84 species which have not been recorded in more than 50 years.
Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w
Abstract Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.
Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100
BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.
Vélez, D., and F. Vivallo. 2024. Key areas for conserving and sustainably using oil-collecting bees (Apidae: Centridini, Tapinotaspidini, Tetrapediini) in the Americas. Journal of Insect Conservation. https://doi.org/10.1007/s10841-024-00620-0
The solitary oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini inhabit areas from the southern part of the Nearctic Region through the Patagonian in southern South America, including the Caribbean. These bees are morphologically and behaviorally specialized in collecting oils as a reward from specialized floral glandular structures present in oil-producer plants. Oil-producer plants and oil-collecting bees have a mutualistic relationship in which the latter potentially pollinate the formers while collecting oils from their flowers. The main objective of this work is to infer the species richness and the key areas for conservation, research, and sustainable use of oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini in the Americas. We collected occurrence records for 528 species of oil-collecting bees and estimated the species richness for each tribe and genus. In total, we estimated 664 species across the three mentioned tribes. With that baseline information, we created models of the richness and rarity patterns of the entire group of species and each tribe as a criterion to highlight key areas, along with richness and rarity centers for the American oil-collecting bees. We identified several critical areas that can be prioritized for conservation and research projects, including territories in Panama, Costa Rica, the Central and Northern Andes, the Amazon basin, and the biogeographic provinces of Cerrado, Atlantic Forest, Pampean, and Chacoan. Here we provide crucial information on key diversity areas for oil-collecting bees across the Americas. This information can be used for the conservation, research, and sustainable use of this important group of insect pollinators.
Graham, K. K., P. Glaum, J. Hartert, J. Gibbs, E. Tucker, R. Isaacs, and F. S. Valdovinos. 2024. A century of wild bee sampling: historical data and neural network analysis reveal ecological traits associated with species loss. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2023.2837
We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.
Moore, M. P., N. T. Leith, K. D. Fowler‐Finn, and K. A. Medley. 2024. Human‐modified habitats imperil ornamented dragonflies less than their non‐ornamented counterparts at local, regional, and continental scales. Ecology Letters 27. https://doi.org/10.1111/ele.14455
Biologists have long wondered how sexual ornamentation influences a species' risk of extinction. Because the evolution of condition‐dependent ornamentation can reduce intersexual conflict and accelerate the fixation of advantageous alleles, some theory predicts that ornamented taxa can be buffered against extinction in novel and/or stressful environments. Nevertheless, evidence from the wild remains limited. Here, we show that ornamented dragonflies are less vulnerable to extinction across multiple spatial scales. Population‐occupancy models across the Western United States reveal that ornamented species have become more common relative to non‐ornamented species over >100 years. Phylogenetic analyses indicate that ornamented species exhibit lower continent‐wide extinction risk than non‐ornamented species. Finally, spatial analyses of local dragonfly assemblages suggest that ornamented species possess advantages over non‐ornamented taxa at living in habitats that have been converted to farms and cities. Together, these findings suggest that ornamented taxa are buffered against contemporary extinction at local, regional, and continental scales.
Grether, G. F., A. E. Finneran, and J. P. Drury. 2023. Niche differentiation, reproductive interference, and range expansion. Ecology Letters. https://doi.org/10.1111/ele.14350
Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.
Feuerborn, C., G. Quinlan, R. Shippee, T. L. Strausser, T. Terranova, C. M. Grozinger, and H. M. Hines. 2023. Variance in heat tolerance in bumble bees correlates with species geographic range and is associated with several environmental and biological factors. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10730
Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.
de Pedro, D., F. S. Ceccarelli, R. Vandame, J. Mérida, and P. Sagot. 2023. Congruence between species richness and phylogenetic diversity in North America for the bee genus Diadasia (Hymenoptera: Apidae). Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02706-8
The current ecological crisis stemming from the loss of biodiversity and associated ecosystem services, highlights the urgency of documenting diversity and distribution. Bees are a classical example of an ecologically and economically important group, due to their high diversity and varied ecosystem services, especially pollination. Here, two common biodiversity indices, namely species richness and phylogenetic diversity, are evaluated geographically to determine the best approach for selecting areas of conservation priority. The model organisms used in this study are the North American species belonging to the bee genus Diadasia (Apidae). Based on the results obtained by analyzing distributional records and a molecular phylogeny, we can see that species richness and phylogenetic diversity are closely linked, although phylogenetic diversity provides a more detailed assessment of the spatial distribution of diversity. Therefore, while either one of these commonly used indices are valid as far as selecting areas of conservation priority, we recommend, if possible, to include genetic information in biodiversity and conservation studies.
Moore, M. P., and F. Khan. 2023. Relatively large wings facilitate life at higher elevations among Nearctic dragonflies. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13946
Determining which traits allow species to live at higher elevations is essential to understanding the forces that shape montane biodiversity.For the many animals that rely on flight for locomotion, a long‐standing hypothesis is that species with relatively large wings should better persist in high‐elevation environments because wings that are large relative to the body generate more lift and decrease the aerobic costs of remaining aloft. Although these biomechanical and physiological predictions have received some support in birds, other flying taxa often possess smaller wings at high elevations or no wings at all.To test if predictions about the requirements for relative wing size at high elevations are generalizable beyond birds, we conducted macroecological analyses on the altitudinal characteristics of 302 Nearctic dragonfly species.Consistent with the biomechanical and aerobic hypotheses, species with relatively larger wings live at higher elevations and have wider elevation breadths—even after controlling for a species' body size, mean thermal conditions, and range size. Moreover, a species' relative wing size had nearly as large of an impact on its maximum elevation as being adapted to the cold.Relatively large wings may be essential to high‐elevation life in species that completely depend on flight for locomotion, like dragonflies or birds. With climate change forcing taxa to disperse upslope, our findings further suggest that relatively large wings could be a requirement for completely volant taxa to persist in montane habitats.