标本数据启用的科学
Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339
The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …
Stropp, J., B. Umbelino, R. A. Correia, J. V. Campos‐Silva, R. J. Ladle, and A. C. M. Malhado. 2020. The ghosts of forests past and future: deforestation and botanical sampling in the Brazilian Amazon. Ecography 43: 979–989. https://doi.org/10.1111/ecog.05026
The remarkable biodiversity of the Brazilian Amazon is poorly documented and threatened by deforestation. When undocumented areas become deforested, in addition to losing the fauna and flora, we lose the opportunity to know which unique species had occupied a habitat. Here we quantify such knowledge…
Crespo-Mendes, N., A. Laurent, and M. Z. Hauschild. 2018. Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment. The International Journal of Life Cycle Assessment 24: 1105–1117. https://doi.org/10.1007/s11367-018-1560-7
Purpose:In Life Cycle Impact Assessment, atmospheric fate factors, soil exposure factors, and effect factors are combined to characterize potential impacts of acidifying substances in terrestrial environments. Due to the low availability of global data sets, effect factors (EFs) have been reported a…
Crespo-Mendes, N., A. Laurent, H. H. Bruun, and M. Z. Hauschild. 2019. Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators 98: 266–275. https://doi.org/10.1016/j.ecolind.2018.11.004
Soil pH has been used to indicate how changes in soil acidity can influence species loss. The correlation between soil pH and plant species richness has mainly been studied in North America and Europe, while there is a lack of studies exploring Tropical floras. Here, our aim was therefore to investi…
Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro, and F. L. Condamine. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039. https://doi.org/10.1073/pnas.1713819115
The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…