2024-12-15 13:00 UTC Bionomia 将离线 1 hr ,以刷新来自全球生物多样性信息设施的数据。

标本数据启用的科学

Werner, M., J. Weidinger, J. Böhner, U. Schickhoff, and M. Bobrowski. 2024. Instagram data for validating Nothofagus pumilio distribution mapping in the Southern Andes: A novel ground truthing approach. Frontiers of Biogeography 17. https://doi.org/10.21425/fob.17.140606

AbstractThe availability of valid, non-biased species occurrence data has always been a major challenge for biodiversity research and modelling studies. Data from open-source databases or remote sensing are promising approaches to increase the availability of species occurrence data. However, these data may contain spatial, temporal, and taxonomic biases or require ground truthing. In recent years, social media has received attention for its contribution to species occurrence data sampling and ground truthing approaches. The wide reach of social media platforms allows for rapid and large-scale analyses.Here we introduce a novel Instagram ground truthing approach to validate the occurrence mapping of Nothofaguspumilio across its entire distribution range. The treeline species of the southern Andes has been extensively studied in small-scale studies, but large-scale modelling approaches are largely missing due to limited accessibility to treeline sites resulting in a lack of occurrence data. The content posted on the social media platform Instagram consists of images and videos in which the species N.pumilio and its location can be identified. By searching for suitable posts using hashtags and location tags, we created 1238 Instagram ground truthing points. We compared the performance of our dataset with open-source data from the Global Biodiversity Information Facility (GBIF) through visual, quantitative, and bias analyses, acknowledging that both social media-based and Citizen Science data are subject to sampling and spatial biases due to collection in human-accessible areas. The Instagram ground truthing points were subsequently used to validate remote sensing occurrence data, generated using Sentinel-2 level 2A data and Supervised Classification. The combined approach – Instagram ground truthing and remote sensing – allows for the collection of occurrence data over the entire latitudinal range of N.pumilio, covering approximately 2000 km.HighlightsThe use of social media content provides potentially important contributions to species occurrence data sampling and ground truthingIn our study we introduce a novel ground truthing approach for species occurrence data sampling based on Instagram dataInstagram ground truthing points, combined with Supervised Classification generate species occurrence data of Nothofaguspumilio over its entire distribution range in the southern AndesThe performance of the Instagram ground truthing points is evaluated by comparison with existing data from the GBIF database.Our Instagram ground truthing approach demonstrates a new way of sampling species occurrence data and can be applied to other suitable species and study areas.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Aagesen, L., D. L. Salariato, M. A. Scataglini, J. M. Acosta, S. S. Denham, and C. Delfini. 2024. Spatial phylogenetics of grasses in the Southern Cone provides insights into ecology and evolution of the family in South America. Journal of Systematics and Evolution 62: 1177–1192. https://doi.org/10.1111/jse.13067

In this study, we explored the distributions of grass genera in the Southern Cone (SC) of South America, applying several phylogenetic diversity (PD) metrics and randomization tests. Grasses appear to have been present in South America since their early evolution as tropical understory species more than 60 Ma. During the course of evolution, grasses have adapted to all terrestrial biomes and become one of the most successful plant families on earth. At present, the SC contains nearly all terrestrial biomes and a wide range of humid to arid ecoregions. Analyzing 126.514 point occurrences and four plastid markers for 148 genera (91% of the native grass genera), we found that tropical humid regions hold the highest PD, with no observed bias in branch lengths. These results indicate that niche conservatism dominates the diversity pattern of grasses in the SC. We found significantly low PD in the Dry Chaco and in the Patagonian Steppe, which suggest ecological filtering in both warm and cold arid regions. The Patagonian Steppe also holds significantly longer branches than expected by chance, as the native grass flora is mainly composed of distantly related Pooideae genera with a northern hemisphere origin. Short branches are found in the Uruguayan Savanna, suggesting that these grasslands could be a cradle for grass diversity within the SC. The dated phylogeny supported the current view of a relatively recent evolution of the family within the SC, with most diversification taking place from the middle Miocene and onwards.

H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71

It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Fierke, J., N. Z. Joelson, G. A. Loguercio, B. Putzenlechner, A. Simon, D. Wyss, M. Kappas, and H. Walentowski. 2024. Assessing uncertainty in bioclimatic modelling: a comparison of two high-resolution climate datasets in northern Patagonia. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02278-5

Climate change is reshaping forest ecosystems, presenting urgent and complex challenges that demand attention. In this context, research that quantifies interactions between climate and forests is substantial. However, modelling at a spatial resolution relevant for ecological processes presents a significant challenge, especially given the diverse geographical contexts in which it is applied. In our study, we aimed to assess the effects of applying CHELSA v.2.1 and WorldClim v2.1 data on bioclimatic analysis within the Río Puelo catchment area in northern Patagonia. To achieve this, we inter-compared and evaluated present and future bioclimates, drawing on data from both climate datasets. Our findings underscore substantial consistency between both datasets for temperature variables, confirming the reliability of both for temperature analysis. However, a strong contrast emerges in precipitation predictions, with significant discrepancies highlighted by minimal overlap in bioclimatic classes, particularly in steep and elevated terrains. Thus, while CHELSA and WorldClim provide valuable temperature data for northern Patagonia, their use for precipitation analysis requires careful consideration of their limitations and potential inaccuracies. Nevertheless, our bioclimatic analyses of both datasets under different scenarios reveal a uniform decline in mountain climates currently occupied by N. pumilio , with projections suggesting a sharp decrease in their coverage under future climate scenarios.

Minghetti, E., P. M. Dellapé, and S. I. Montemayor. 2024. Orsillus depressus (Heteroptera: Lygaeidae), an invasive circum-mediterranean species recently reported from America. Are the endemic and already endangered Cupressaceae trees from the Andean Region facing a new challenge? Biological Invasions. https://doi.org/10.1007/s10530-024-03313-6

Orsillus depressus , a circum-mediterranean species of seed bug that lives on several genera and species of Cupressaceae is considered a pest of these trees, has recently been recorded for the first time in America, in Argentina. As the western records of O. depressus are close to endemic Cupressaceae forests from the Andean Region, our attention is drawn to the possible risk of colonization and establishment of O. depressus on these forests, where three endemic monotipic genera are found: Austrocedrus chilensis , Fitzroya cupressoides and Pilgerodendron uviferum . Maxent Models for present and future scenarios, and Minimum Volume Ellipsoids were used, and natural pathways were explored. Orsillus depressus has shown a high adaptive capacity to environments with different climates, and considering the models predictions, there are large suitable areas for its establishment in southern Argentina and Chile. Also, the climatic space O. depressus occupies is small and in part new, and an expansion should be expected. Moreover, multiple natural pathways were recognized that would allow its ingression in areas highly suitable with endemic Cupressaceae forests.

Souto, C. P., L. P. Zalazar, M. Tadey, and A. C. Premoli. 2024. Modeling past, present and future: Species-specific responses to climate changes in three shrub congeners from south American drylands. Journal of Arid Environments 221: 105139. https://doi.org/10.1016/j.jaridenv.2024.105139

Drylands cover ca. 40% of the land global surface and deliver significant ecosystem services. These regions are the most sensitive, prone to suffer the effects of climate and distribution changes, so estimates on projected range shifts are crucial to complement traditional approaches to biodiversity conservation and sustainability. Shrubs of the Monte Desert dominate the largest temperate dryland in South America. Our goal is to assess the spatial distribution and niche overlap of three native shrubs (Larrea cuneifolia (LC), L. divaricata (LD), and L. nitida (LN)), under present climate conditions, to retrodict their potential past distribution, and anticipate their predicted range under future climate scenarios. We used ecological niche modeling that were projected to the past (LGM and Mid Holocene) and future (2050 and 2070) under two scenarios of greenhouse gas emissions and two model of global circulation. All species have high niche overlap (67–89%), but showed species-specific responses, highlighting the need to develop mitigation measures particularly for LD and LN in the face of climate change and land use pressures. Global South deserts are being highly degraded and information on future potential ranges of endemic species can support the development of sustainable conservation and management plans.

Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721. https://doi.org/10.3390/plants12142721

The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.

Lima, V. P., R. A. Ferreira de Lima, F. Joner, L. D’Orangeville, N. Raes, I. Siddique, and H. ter Steege. 2023. Integrating climate change into agroforestry conservation: A case study on native plant species in the Brazilian Atlantic Forest. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14464

Designing multispecies systems with suitable climatic affinity and identifying species' vulnerability under human‐driven climate change are current challenges to achieve successful adaptation of natural systems. To address this problem, we need to (1) identify groups of species with climatic similarity under climate scenarios and (2) identify areas with high conservation value under predicted climate change.To recognize species with similar climatic niche requirements that can be grouped for mixed cropping in Brazil, we employed ecological niche models (ENMs) and Spearman's ρ for overlap. We also used prioritization algorithms to map areas of high conservation value using two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5) to assess mid‐term (2041–2060) and long‐term (2061–2080) climate change impacts.We identified 15 species groups with finer climatic affinities at different times depicted on hierarchical clustering dendrograms, which can be combined into agroecological agroforestry systems. Furthermore, we highlight the climatically suitable areas for these groups of species, thus providing an outlook of where different species will need to be planted over time to be conserved. In addition, we observed that climate change is predicted to modify the spatial association of these groups under different future climate scenarios, causing a mean negative change in species climatic similarity of 9.5% to 13.7% under SSP2‐4.5 scenario and 9.5% to 10.5% under SSP5‐8.5, for 2041–2060 and 2061–2080, respectively.Synthesis and applications. Our findings provide a framework for agroforestry conservation. The groups of species with finer climatic affinities identified and the climatically suitable areas can be combined into agroecological productive systems, and provide an outlook of where different species may be planted over time. In addition, the conservation priority zones displaying high climate stability for each species individually and all at once can be incorporated into Brazil's conservation plans by policymakers to prioritize specific sites. Lastly, we urge policymakers, conservation organizations and donors to promote interventions involving farmers and local communities, since the species' evaluated have proven to maintain landscapes with productive forest fragments and can be conserved in different Brazilian ecosystems.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .