标本数据启用的科学
Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752
AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.
Lu, K., M. Liu, K. Hu, Y. Liu, Y. He, H. Bai, Z. Du, and Y. Duan. 2024. Potential Global Distribution and Habitat Shift of Prunus subg. Amygdalus Under Current and Future Climate Change. Forests 15: 1848. https://doi.org/10.3390/f15111848
The genus of Prunus subg. Amygdalus are endangered Tertiary-relict plants that are an essential source of woody plant oil. In order to provide a theoretical basis for better protection and utilization of species in the Prunus subg. Amygdalus. This study collected global distribution information for six species within the Prunus subg. Amygdalus, along with data on 29 environmental and climatic factors. The Maximum Entropy (MaxEnt) model was used to simulate the globally suitable distribution areas for these species within the subgenus. The suitable results showed that the area under the test curve (AUC) values of the simulation results were more than 0.8, indicating that the simulation results have high accuracy. Temperature, precipitation, UV-B, and altitude were critical environmental factors affecting the distribution of each species in Prunus subg. Amygdalus. Currently, the distribution area of six species in this genus, from largest to smallest, is Prunus triloba (Lindl.) Ricker, Prunus tenella Batsch, Prunus amygdalus Batsch, Prunus pedunculata Maxim, Prunus mongolica Maxim and Prunus tangutica (Batal.) Korsh. The simulation results of distribution areas showed that under the ssp2.45 and ssp5.85 scenarios, the potential distribution areas of P. amygdalus, P. tangutica, and P. pedunculata all show a decreasing trend, while the distribution areas of P. mongolica and P. tenella, and P. triloba exhibit an increasing trend. The general distribution of P. amygdalus, P. mongolica, and P. tenella will trend to transfer in a northwest direction. P. tangutica and P. pedunculata were affected by other environmental factors (such as slope, altitude, and soil pH), and the distribution area has a tendency to move northeastward. The P. triloba moved to the southwest. The spatiotemporal distribution patterns of Prunus subg. Amygdalus can be used as a reference for forest management and to formulate species conservation strategies.
Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3
Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.
Noel, A., D. R. Schlaepfer, B. J. Butterfield, M. C. Swan, J. Norris, K. Hartwig, M. C. Duniway, and J. B. Bradford. 2024. Most Pinyon–Juniper Woodland Species Distributions Are Projected to Shrink Rather Than Shift Under Climate Change. Rangeland Ecology & Management. https://doi.org/10.1016/j.rama.2024.09.002
Pinyon–juniper (PJ) woodlands are among the most widespread ecosystems in rangelands of western North America, supporting diverse wildlife habitat, recreation, grazing, and cultural/spiritual enrichment. Anticipating future distribution shifts under changing climate will be critical to climate adaptation and conservation efforts in these ecosystems. Here, we evaluate drivers of PJ tree species’ distributions and project changes in response to future climate change. We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.
Xu, L., Z. Song, T. Li, Z. Jin, B. Zhang, S. Du, S. Liao, et al. 2024. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). Plant Diversity. https://doi.org/10.1016/j.pld.2024.10.003
Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.
Li, X.-D., Y. Chen, C.-L. Zhang, J. Wang, X.-J. Song, X.-R. Zhang, Z.-H. Zhu, and G. Liu. 2024. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. Science of The Total Environment 954: 176723. https://doi.org/10.1016/j.scitotenv.2024.176723
As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges.During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.
Prevéy, J. S., I. S. Pearse, D. M. Blumenthal, A. J. Howell, J. A. Kray, S. C. Reed, M. B. Stephenson, and C. S. Jarnevich. 2024. Phenology forecasting models for detection and management of invasive annual grasses. Ecosphere 15. https://doi.org/10.1002/ecs2.70023
Non‐native annual grasses can dramatically alter fire frequency and reduce forage quality and biodiversity in the ecosystems they invade. Effective management techniques are needed to reduce these undesirable invasive species and maintain ecosystem services. Well‐timed management strategies, such as grazing, that are applied when invasive grasses are active prior to native plants can control invasive species spread and reduce their impact; however, anticipating the timing of key phenological stages that are susceptible to management over vast landscapes is difficult, as the phenology of these species can vary greatly over time and space. To address this challenge, we created range‐wide phenology forecasts for two problematic invasive annual grasses: cheatgrass (Bromus tectorum), and red brome (Bromus rubens). We tested a suite of 18 mechanistic phenology models using observations from monitoring experiments, volunteer science, herbarium records, timelapse camera imagery, and downscaled gridded climate data to identify the models that best predicted the dates of flowering and senescence of the two invasive grass species. We found that the timing of flowering and senescence of cheatgrass and red brome were best predicted by photothermal time models that had been adjusted for topography using gridded continuous heat‐insolation load index values. Phenology forecasts based on these models can help managers make decisions about when to schedule management actions such as grazing to reduce undesirable invasive grasses and promote forage production, quality, and biodiversity in grasslands; to predict the timing of greatest fire risk after annual grasses dry out; and to select remote sensing imagery to accurately map invasive grasses across topographic and latitudinal gradients. These phenology models also have the potential to be operationalized for within‐season or within‐year decision support.
Singhal, S., C. DiVittorio, C. Jones, I. Ixta, A. Widmann, I. Giffard‐Mena, F. Zapata, and A. Roddy. 2024. Population structure and natural selection across a flower color polymorphism in the desert plant Encelia farinosa. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16413
AbstractPremiseClines—or the geographic sorting of phenotypes across continual space—provide an opportunity to understand the interaction of dispersal, selection, and history in structuring polymorphisms.MethodsIn this study, we combine field‐sampling, genetics, climatic analyses, and machine learning to understand a flower color polymorphism in the wide‐ranging desert annual Encelia farinosa.ResultsWe find evidence for replicated transitions in disk floret color from brown to yellow across spatial scales, with the most prominent cline stretching ~100 km from southwestern United States into México. Because population structure across the cline is minimal, selection is more likely than drift to have an important role in determining cline width.ConclusionsGiven that the cline aligns with a climatic transition but there is no evidence for pollinator preference for flower color, we hypothesize that floret color likely varies as a function of climatic conditions.
Parys, K., K. Huntzinger, A. Seshadri, and T. Rashid. 2024. First record of <i>Xenoglossa </i>(<i>Cemolobus</i>) <i>ipomoeae </i>(Robertson, 1891) in Mississippi: Distribution, ecology, and conservation implications. Journal of Melittology. https://doi.org/10.17161/jom.vi120.22418
The first record of Xenoglossa (Cemolobus) ipomoeae (Robertson, 1891) (Apidae: Eucerini) for the state of Mississippi, USA is reported. This species is a rarely encountered specialist bee that is known to forage on Ipomoea pandurata (L.) G.F.W. Mey (Convolvulaceae), potentially along with other closely related plants in the genus Ipomoea. A single female was collected in Bolivar County during 2017 that a represents a significant southwestern range expansion for this bee species.
Radbouchoom, S., M. D. delos Angeles, T. Phutthai, and H. Schneider. 2024. Towards zero extinction—A case study focusing on the plant genus Begonia in Thailand. Integrative Conservation. https://doi.org/10.1002/inc3.67
Plant species with small habitat ranges and specific edaphic requirements are highly vulnerable to extinction and thus require enhanced attention in biodiversity conservation. This study was designed to explore the challenges of protecting such plant species by evaluating the in situ and ex situ conservation capacities available for Thailand's species of the mega‐diverse plant genus Begonia L. A comprehensive assessment of occurrence records across the country was conducted to evaluate the spatial distribution of Begonia diversity in Thailand, identify biodiversity hotspots, assess the extinction threats faced by the 60 Begonia species known in the country, and identify existing conservation capacities and potential gaps. The results show that 78% of Begonia species in Thailand are vulnerable to extinction, with the Northern floristic region identified as both a Begonia species hotspot and a region with major conservation gaps. While in situ conservation efforts have been successful in covering over 88% of the species, they have failed to provide the protection required to achieve zero extinction. Ex situ conservation capacities are poorly developed, with only 13% of species present in botanical gardens, and no seed banking or other related activities have been initiated. This evaluation presents a sharply contrasting message: on one hand, Thailand has assembled substantial capacities to protect these plants through established national parks and other protected areas, but on the other hand, essential capacities are still lacking to render the zero extinction target achievable. We advocate for the implementation of a multi‐component conservation strategy to enable Thailand to move towards zero species extinction, even for plant species with narrow habitat ranges and high edaphic specialisation.