标本数据启用的科学
Wenk, E., T. Mesaglio, D. Keith, and W. Cornwell. 2024. Curating protected area-level species lists in an era of diverse and dynamic data sources. Ecological Informatics 84: 102921. https://doi.org/10.1016/j.ecoinf.2024.102921
Dynamic yet accurate species lists for protected areas are essential for conservation and biodiversity research. Even when such lists exist, changing taxonomy, ongoing species migrations and invasions, and new discoveries of historically overlooked species mean static lists can become rapidly outdated. Biodiversity databases such as the Global Biodiversity Information Facility, and citizen science platforms such as iNaturalist, offer rapidly accessible, georeferenced data, but their accuracy is rarely tested. Here we compare species lists generated for two of the world's oldest, more famous protected areas – Yosemite National Park in California, United States and Royal National Park in New South Wales, Australia – using both automated data extraction techniques and extensive manual curation steps. We show that automated list creation without manual curation offers inflated measures of species diversity. Lists generated from herbarium vouchers required more curation than lists generated from iNaturalist, with both incorrect coordinates attached to vouchers and long-outdated names inflating voucher-based species lists. In comparison, iNaturalist data had relatively few errors, in part due to continual curation by a large community, including many botanical experts, and the frequent and automatic implementation of taxonomic updates. As such, iNaturalist will become an increasingly accurate supplementary source for automated biodiversity lists over time, but currently offers poor coverage of graminoid species and introduced species relative to showier, native taxa, and relies on continued expert contributions to identifications. At this point, researchers must manually curate lists extracted from herbarium vouchers or static park lists, and integrate these data with records from iNaturalist, to produce the most robust and taxonomically up-to-date species lists for protected areas.
Ract, C., N. D. Burgess, L. Dinesen, P. Sumbi, I. Malugu, J. Latham, L. Anderson, et al. 2024. Nature Forest Reserves in Tanzania and their importance for conservation S. S. Romanach [ed.],. PLOS ONE 19: e0281408. https://doi.org/10.1371/journal.pone.0281408
Since 1997 Tanzania has undertaken a process to identify and declare a network of Nature Forest Reserves (NFRs) with high biodiversity values, from within its existing portfolio of national Forest Reserves, with 16 new NFRs declared since 2015. The current network of 22 gazetted NFRs covered 948,871 hectares in 2023. NFRs now cover a range of Tanzanian habitat types, including all main forest types—wet, seasonal, and dry—as well as wetlands and grasslands. NFRs contain at least 178 of Tanzania’s 242 endemic vertebrate species, of which at least 50% are threatened with extinction, and 553 Tanzanian endemic plant taxa (species, subspecies, and varieties), of which at least 50% are threatened. NFRs also support 41 single-site endemic vertebrate species and 76 single-site endemic plant taxa. Time series analysis of management effectiveness tracking tool (METT) data shows that NFR management effectiveness is increasing, especially where donor funds have been available. Improved management and investment have resulted in measurable reductions of some critical threats in NFRs. Still, ongoing challenges remain to fully contain issues of illegal logging, charcoal production, firewood, pole-cutting, illegal hunting and snaring of birds and mammals, fire, wildlife trade, and the unpredictable impacts of climate change. Increased tourism, diversified revenue generation and investment schemes, involving communities in management, and stepping up control measures for remaining threats are all required to create a network of economically self-sustaining NFRs able to conserve critical biodiversity values.
Munna, A. H., N. A. Amuri, P. Hieronimo, and D. A. Woiso. 2023. Modelling ecological niches of Sclerocarya birrea subspecies in Tanzania under the current and future climates. Silva Fennica 57. https://doi.org/10.14214/sf.23009
The information on ecological niches of the Marula tree, Sclerocarya birrea (A. Rich.) Horchst. subspecies are needed for sustainable management of this tree, considering its nutritional, economic, and ecological benefits. However, despite Tanzania being regarded as a global genetic center of diversity of S. birrea, information on the subspecies ecological niches is lacking. We aimed to model ecological niches of S. birrea subspecies in Tanzania under the current and future climates. Ecological niches under the current climate were modelled by using ecological niche models in MaxEnt using climatic, edaphic, and topographical variables, and subspecies occurrence data. The Hadley Climate Center and National Center for Atmospheric Research's Earth System Models were used to predict ecological niches under the medium and high greenhouse gases emission scenarios for the years 2050 and 2080. Area under the curves (AUCs) were used to assess the accuracy of the models. The results show that the models were robust, with AUCs of 0.85–0.95. Annual and seasonal precipitation, elevation, and soil cation exchange capacity are the key environmental factors that define the ecological niches of the S. birrea subspecies. Ecological niches of subsp. caffra, multifoliata, and birrea are currently found in 30, 22, and 21 regions, and occupy 184 814 km2, 139 918 km2, and 28 446 km2 of Tanzania's land area respectively, which will contract by 0.4–44% due to climate change. Currently, 31–51% of ecological niches are under Tanzania’s protected areas network. The findings are important in guiding the development of conservation and domestication strategies for the S. birrea subspecies in Tanzania.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Reichgelt, T., D. R. Greenwood, S. Steinig, J. G. Conran, D. K. Hutchinson, D. J. Lunt, L. J. Scriven, and J. Zhu. 2022. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004418
During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.
Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292
Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Ma, C.-S., W. Zhang, Y. Peng, F. Zhao, X.-Q. Chang, K. Xing, L. Zhu, et al. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications 12. https://doi.org/10.1038/s41467-021-25505-7
Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…