标本数据启用的科学

Mokotjomela, T. M., L. R. Vukeya, T. J. Mbele, K. Matsokane, T. Munyai, B. R. Ntloko, and M. P. Monyatsi. 2024. The alien and invasive plant species that may be a future conservation threat to the Lesotho Afro-alpine Drakensberg area. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02326-0

In this study, we documented and compared similarities of the alien plant species richness between South Africa represented by three provinces: Free State (FS), Eastern Cape (EC), and KwaZulu-Natal (KZN), and Lesotho—an important water source area for southern Africa. We tested the prediction that alien plant species in Lesotho are a subset of South Africa’s species partly because of the short geographical distances between the provinces and Lesotho, and environmental similarity. Overall, 7124 records containing 1040 individual alien plant species belonging to 147 families were documented. South Africa had significantly greater alien plant species records than Lesotho. Of 147 plant families, 44 were represented in both countries, and 101 families did not occur in Lesotho. Against the study prediction, the Geraniaceae and Orobanchaceae families occurred in Lesotho but not in three provinces. KwaZulu-Natal had a significantly greater number of species than Lesotho but not the other provinces, and 49% of species in three provinces originated from the Americas (i.e. South and North), Europe, and Asia. A similar pattern was observed in Lesotho. Woody and herbaceous alien plants, habitat transformers, dominated three provinces, while herbaceous species dominated Lesotho. The 62% of 1040 alien species were not listed in the South African national regulations, indicating their negative impacts are also unknown in the study region. Plant nurseries were a dominant species dispersal pathway in South Africa, while home gardens were prominent in Lesotho. We conclude that invasive plant species constitute a future threat to the Lesotho Drakensberg highlands water catchments and recommend prioritising their management and improving cross-border biosecurity between Lesotho and South Africa.

Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w

Abstract  Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.

Ramos-Muñoz, M., M. C. Castellanos, M. Blanco-Sánchez, B. Pías, J. A. Ramírez-Valiente, R. Benavides, A. Escudero, and S. Matesanz. 2024. Drivers of phenotypic variation and plasticity to drought in populations of a Mediterranean shrub along an environmental gradient. Environmental and Experimental Botany 228: 106011. https://doi.org/10.1016/j.envexpbot.2024.106011

Assessing the factors driving intraspecific phenotypic variation is crucial to understand the evolutionary trajectories of plant populations and predict their vulnerability to climate change. Environmental gradients often lead to phenotypic divergence in functional traits and their plasticity across populations. We studied the entire environmental range of the Mediterranean gypsum endemic shrub Helianthemum squamatum to evaluate the factors underlying quantitative population differentiation and phenotypic plasticity to drought, using a common garden with 16 populations that covered the main geographic and the entire climatic range of the species. Sampling followed a hierarchical approach to assess trait genetic variation within and among four distinct geographical regions. We found high but similar plastic responses across populations, which were consistent with adaptive plasticity to drought, including advanced phenology, more sclerophyllous leaves, higher water use efficiency and larger seeds in dry conditions. Despite these generally similar plastic responses, we found significant population differentiation in quantitative traits, part of which was structured at the regional scale. Such differentiation was not associated with environmental variation, including differences in climate and soil conditions. This suggests that non-adaptive processes might have had a role on genetic differentiation in H. squamatum, likely due to the island-like configuration of gypsum habitats and the lack of effective seed dispersal of the study species. Our results emphasize the role of phenotypic plasticity in adaptive drought response and the importance of considering both adaptive and non-adaptive processes shaping intraspecific phenotypic variation, which is crucial for predicting plant population vulnerability to climate change.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Goicolea, T., A. Adde, O. Broennimann, J. I. García‐Viñas, A. Gastón, M. José Aroca‐Fernández, A. Guisan, and R. G. Mateo. 2024. Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies. Ecography. https://doi.org/10.1111/ecog.07328

Spatial truncation in species distribution models (SDMs) might cause niche truncation and model transferability issues, particularly when extrapolating models to non‐analog environmental conditions. While broad calibration extents reduce truncation issues, they usually overlook local ecological factors driving species distributions at finer resolution. Spatially‐nested hierarchical SDMs (HSDMs) address truncation by merging (a) a global model calibrated with broadly extended, yet typically low‐resolution, basic, and imprecise data; and (b) a regional model calibrated with spatially restricted but more precise and reliable data. This study aimed to examine HSDMs' efficacy to overcome spatial truncation in national‐scale studies. We compared two hierarchical strategies (‘covariate', which uses the global model output as a covariate for the regional model, and ‘multiply', which calculates the geometric mean of the global and regional models) and a non‐hierarchical strategy. The three strategies were compared in terms of niche truncation, environmental extrapolation, model performance, species' predicted distributions and shifts, and trends in species richness. We examined the consistency of the results over two study areas (Spain and Switzerland), 108 tree species, and four future climate scenarios. Only the non‐hierarchical strategy was susceptible to niche truncation, and environmental extrapolation issues. Hierarchical strategies, particularly the ‘covariate' one, presented greater model accuracy than non‐hierarchical strategies. The non‐hierarchical strategy predicted the highest overall values and the lowest decreases over time in species distribution ranges and richness. Differences between strategies were more evident in Switzerland, which was more affected by niche truncation issues. Spain was more negatively affected by climate change and environmental extrapolation. The ‘covariate' strategy exhibited higher model performance than the ‘multiply' one. However, uncertainties regarding model temporal transferability advocate for adopting and further examining multiple hierarchical approaches. This research underscores the importance of adopting spatially‐nested hierarchical SDMs given the compromised reliability of non‐hierarchical approaches due to niche truncation and extrapolation issues.

Goncalves, E., F. Casimiro-Soriguer Solanas, J. García-Caballero, and N. Hidalgo-Triana. 2023. Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications. Diversity 15: 1120. https://doi.org/10.3390/d15111120

Although Mediterranean coastal regions in southern Spain have high floristic diversity and numerous Habitats of Community Interest (HCIs) identified by the European Union Directive Council, they are also vulnerable to invasive plants. In our study, we aimed to create a checklist of terrestrial alien taxa in the Iberian area of the Alboran coast, assess each species’ current invasion, analyse the influence of environmental attributes on invasion, estimate the richness of alien species per HCI group, and evaluate each species’ potential invasiveness based on its reproductive and dispersal attributes. The checklist that we developed includes 123 alien taxa, most belonging to the Asteraceae, Asparagaceae, and Poaceae families. Notably, 20% of the species are super invaders that occupy more than 20% of HCIs. We also identified Aloe vera, Cylindropuntia spp., Agave salmiana, Opuntia spp., and Paspalum spp. as incipient invaders with the potential for future expansion. Although most alien flora in the HCIs are not regulated by Spanish legislation (RDL 630/2013), monitoring and eradication plans are crucial. Advocating the cessation of using those plants in gardens and reducing anthropogenic pressure are also essential, as human activities worsen invasion dynamics and facilitate the introduction and establishment of invasive species.

Suicmez, B., and M. Avci. 2023. Distribution patterns of Quercus ilex from the last interglacial period to the future by ecological niche modeling. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10606

The plants' geographic distribution is affected by natural or human‐induced climate change. Numerous studies at both the global and regional levels currently focus on the potential changes in plant distribution areas. Ecological niche modeling can help predict the likely distribution of species according to environmental variables under different climate scenarios. In this study, we predicted the potential geographic distributions of Quercus ilex L. (holm oak), a keystone species of the Mediterranean ecosystem, for the Last Interglacial period (LIG: ~130 Ka), the Last Glacial Maximum (LGM: ~22 Ka), mid‐Holocene (MH: ~6 Ka), and future climate scenarios (Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios) for 2050–2070 obtained from CCSM4 and MIROC‐ESM global climate scenarios respectively. The models were produced with algorithms from the R‐package “biomod2” and assessed by AUC of the receiver operating characteristic plot and true skill statistics. Aside from BIOCLIM (SRE), all model algorithms performed similarly and produced projections that are supported by good evaluation scores, although random forest (RF) slightly outperformed all the others. Additionally, distribution maps generated for the past period were validated through a comparison with pollen data acquired from the Neotoma Pollen Database. The results revealed that southern areas of the Mediterranean Basin, particularly coastal regions, served as long‐term refugia for Q. ilex, which was supported by fossil pollen data. Furthermore, the models suggest long‐term refugia role for Anatolia and we argue that Anatolia may have served as a founding population for the species. Future climate scenarios indicated that Q. ilex distribution varied by region, with some areas experiencing range contractions and others range expands. This study provides significant insights into the vulnerability of the Q. ilex to future climate change in the Mediterranean ecosystem and highlights the crucial role of Anatolia in the species' historical distribution.

Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022

Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.