标本数据启用的科学

Stropp, J., B. Umbelino, R. A. Correia, J. V. Campos‐Silva, R. J. Ladle, and A. C. M. Malhado. 2020. The ghosts of forests past and future: deforestation and botanical sampling in the Brazilian Amazon. Ecography 43: 979–989. https://doi.org/10.1111/ecog.05026

The remarkable biodiversity of the Brazilian Amazon is poorly documented and threatened by deforestation. When undocumented areas become deforested, in addition to losing the fauna and flora, we lose the opportunity to know which unique species had occupied a habitat. Here we quantify such knowledge…

Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Ritter, C. D., S. Faurby, D. J. Bennett, L. N. Naka, H. ter Steege, A. Zizka, Q. Haenel, et al. 2019. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports 9. https://doi.org/10.1038/s41598-019-55490-3

Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-or…

Cámara-Leret, R., N. Raes, P. Roehrdanz, Y. De Fretes, C. D. Heatubun, L. Roeble, A. Schuiteman, et al. 2019. Climate change threatens New Guinea’s biocultural heritage. Science Advances 5. https://doi.org/10.1126/sciadv.aaz1455

New Guinea is the most biologically and linguistically diverse tropical island on Earth, yet the potential impacts of climate change on its biocultural heritage remain unknown. Analyzing 2353 endemic plant species distributions, we find that 63% of species are expected to have smaller geographic ran…

Zizka, A., J. Azevedo, E. Leme, B. Neves, A. F. Costa, D. Caceres, and G. Zizka. 2019. Biogeography and conservation status of the pineapple family (Bromeliaceae) M. Carboni [ed.],. Diversity and Distributions 26: 183–195. https://doi.org/10.1111/ddi.13004

Aim: To provide distribution information and preliminary conservation assessments for all species of the pineapple family (Bromeliaceae), one of the most diverse and ecologically important plant groups of the American tropics—a global biodiversity hotspot. Furthermore, we aim to analyse patterns of …

Karger, D. N., M. Kessler, O. Conrad, P. Weigelt, H. Kreft, C. König, and N. E. Zimmermann. 2019. Why tree lines are lower on islands—Climatic and biogeographic effects hold the answer J. Grytnes [ed.],. Global Ecology and Biogeography 28: 839–850. https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

VÁZQUEZ-GARCÍA, J.-A., D. A. NEILL, V. SHALISKO, F. ARROYO, and R. E. MERINO-SANTI. 2018. Magnolia mercedesiarum (subsect. Talauma, Magnoliaceae): a new Andean species from northern Ecuador, with insights into its potential distribution. Phytotaxa 348: 254. https://doi.org/10.11646/phytotaxa.348.4.2

Magnolia mercedesiarum, a new species from the eastern slopes of the Andes in northern Ecuador, is described and illustrated, and a key to Ecuadorian Magnolia (subsect. Talauma) is provided. This species differs from M. vargasiana in having broadly elliptic leaves that have an obtuse base vs. suborb…

Grossenbacher, D. L., Y. Brandvain, J. R. Auld, M. Burd, P. Cheptou, J. K. Conner, A. G. Grant, et al. 2017. Self‐compatibility is over‐represented on islands. New Phytologist 215: 469–478. https://doi.org/10.1111/nph.14534

Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularl…